
NATIONALADVISORY COMMIITEE
FOR AERONAUTICS

TECHNICAL NOTE 3340

GENERALIZATION OF GAS -FLOW -INTERFEROMETRY

AND INTERFEROGRAM EVALUATION EQUATIONS

ONE -DIMENSIONAL DENSITY FIELDS

Walton L. Howes and Donald R. Buchele

Lewis Flight Propulsion Laboratory
Cleveland, Ohio

Washington

February 1955

THEORY

FOR



WCH LIBRARYKAFB,NM s

rucli TN 3340

TABLE OF comms

Page
SUMMARY. . . . . . . . ...* . . . ...*...

INTRODUCTION. . . . . . . . . . . . . . . . . . .

GENERALIZED EQUAT’IONS. . . . . . . . . . . . . . .

APPLICATION TO ONE-DIMENSIONAL DENSITY DISTRIBUTION
Theoretical Limitations . . . . . . . . . . . . .
Apparent-ray-trace crossing . . . . . . . . . .
Series convergence . . . . . . . . . . . . . .
Applicability criterion . . . . . . . . . . . .
Extended or misalined light source . . . . . .
Light-source geometry . . . . . . . . . . . . .
Test-section windows . . . . . . . . . . . . .

Analytical Verification . . . . . . . . . . . . .
Experimental Verification . . . . . . . . . . . .
Comparison with Other Analyses . . . . . . . . .

APPENDIXES
A

B

c

D

E

F

G

E

-SYM80LS. . . . . ● . . ● . . . . . . . . . .

- GENERALIZED FRINGE-SHIFT EQUATION . . . . . .

- DERIVATION OF EVALUATION EQUATIONS ASSOCIATED
ONE-DIMENSIONKG DISTRIBUI’ION P(y) . . . .

Light Path . . . . . . . . . . . . . . . . . .
Optical Distortion . . . . . . . . . . . . . .
Fringe Shift . . . . . . . . . . . . . . . . .

. . . . . . . .

. . . . . . . .

. . . . . . . .

. . . . . . . .

. . . . . . . .

. ..0. . . .

. . . . . . . .

. . . . . . . .

. . . . . . . .

. . . . . . . .

. . . . . . . .

. . . . . . . .

. . . . . . . .

. . . . . . . .

. . . . . %..

. . . . . . . .

WITH A
. . . . . . . .
. . . . . . . .
. . . . . . . .
. . . . . . . .

- RELATION BETWEEN MEASURED AND DIXTORTIONIESS FRINGE-
8HIFT PROFILES Associated WITHA ONE-DIMENSIONAL
DIS’IR~UTION.p(y) . . . . . . . . . . . . . . . . . . . .

- LIMITATIONS (X’TWO-TERM EVALUATION EQUATIONS ASS03XTED
WITHA 0N3Z-DIMENSIONALDISTRIBUHON P(y) . . . . . . . . .

Apparent-ray-trace crossing . . . . . . . . . . . . . . . . . .
Series convergence . . . . . . . . . . . . . . . . . . . . . .
Applicability criterion . . . . . . . . . . . . . . . . . . . .
Test-sectionwindows . . . . . . . . . %. . . . . . . . . . .

- THREE-TERM EVJKHJATIONEQUATIONS ASS031ATED Wm A
ONE-DIMENSIONALDISTRIBUTI~ f3(y) . . . . . . . . . . . .

- EQUATIONS FOR CALCIIL&TINGPRCIFIIX Nj ASSOCIATED WITEA
EYPCYTHETICALE~ONENTIAL-DENSITTPR(IE’IIZ . . . . . . . . .

- EXPERIMENTAL VERIFICATION @’ REFRACTTON _ . . . . . . .

REFERENCES . . . . . . . . . . . . . . . . . . . . . . . . . . . .

1

1

2

5
8
9
10
10
10
11
11
12
13
13

15

19

20
20
24
25

28

31
31
33
34
35

37

39

43

45

—.



NATIONAL ADVISCRY COMMTTEE FOR AERONAUTICS

TECBNICAL NOTE 3340

GENERALIZATION OF GAS-FLUJ-INIHWTROMETRY THEmY m ~CGRAM

EVALUATION EQUATIONS FOR ONE-DIMENSIONAL DENSITY FIELDS

By Walton L. Eowes and Donald R. Buchele

SUMMARY

Interferogram evaluskion equations for calculating one-dimensional
density distributions from optical-interferencerecords are derived
frm generalized equations. The resulting evalu&tion equations are ap-
plicable for any plane of fecus. Assumptions involved in the deriva-
tions are more general than heretofore and permit determinantion of limi-
tations and systematic errors of the evaluation equations. Errors
caused by an etiended or misalined light source and by test-section

● windows are found to be negligible when the extension or misalinement
is small compared with the focal length of the collimating lens. A
criterion for applicability of the evaluation equations is established,

2 and a criterion for avoiding apparent-ray-trace crossing is derived.

The proposed evaluation eqpations and procedures sre compared with
previous resuits and are tested in a hypothetical and an experimental
situation involving known density distributions.

INTRODUCTION

Zehnder-Mach interferometershave been employed in recent years for
uantitative studies of various aerodynamic and thermodynamic phenomena
?refs. 1 to 6), particularly boundary layers. The optical-interference
method possesses the important advantages of permitting instantaneous
quantitative recording of the entire phenomenon without disturbing it.
However, because the interference method is integrative, tt is presently
restricted to certain quantitative applications by mathematical limita-
tions that are primarily attributable to the geometry of the phenomenon
and to optical refraction.

Practical interferogrsm evaluation eqyations for one-dimensional
density fields, where the density gradient is essentially perpendicular
to the incident light path, have been proposed in references 7 to U.
and include the effects of optical refraction. In references 7 to 10 a
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simple evaluation procedure is developed; Q@ever, this procedure in
its most general form necessitates a “shifting” procedure, becous in- ““F”
valid in the presence of apparent-ray-trace crossing, and may not apply
in the immediate vicinity of surfaces. In the present report the analy-
sis given in reference 11 is generalized and modified in an attempt to
eliminate the preceding difficulties and to determine the @ortance of
various system&tic errors.

GENERALIZED EQUATIONS bm–
1+
m

General functional relations giving the refractive-index distribu-
tion as a function of measurable quantities and considering a laterally
extended light source are derived. For subsequent simplicity, the fol-
lowing assumptions are made:

(l)l%e interferometer optical s@em imperfect.

(2) The light incident at the test section, which contains the
phenomenon to be studied, is perfectly collimated. ●

(3) The refractive index of the medium to be studied is very nearly
unity.

(a) The test medium possesses no internal space discontinui-
ties of refractive index, such as shock waves, in the region of
interest.

.—

(b) The test medium is bounded by plane discontinuities, such
as wind-tunnel.windows,perpendicular to the optical axis of the
interferometer optical system.

—

(4) All other media traversed by the light possess a constant
refractive index.

References 9 and 11 have shown that the pertinent effects of wind-
tunnel windows are insignificant for the case of an axial point-light-
source. It will presentlybe shown that window effects sre also essen-
tially negligible with respect to light emitted from off-axis source
points. Hence, the effects of windows bounding the test section will
be disregarded temporarily in the sribsequentanalysis.

The important optical quantities involved in evalua~~ng an un~oYu
density field from an interferogram are: fringe shifts, which denote

—

observed changes of phase and order of interference associated with -.
—

density changes at fixed points in the field; and, a form of optical
—

*

distortion (very similar to a mirage) that results from apparent shifts
of location of points in the field.

.—

9
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*

In order to express fringe shifts and
3 measurable quantities, the light path must

.Jd
c)

distortions as functions of
be known. Light-ray traces

in an optical medium follow Fermat’s prtnc:ple, namely,

if= c/dt=/wds=etiremum (1)

which defines an optical-path length ~ (all synibolsare defined in
appendix A), where c is the velocity of light in vacuum, t iS the
time required for the light to traverse distances measured along the
light paths, and K is the refractive index of the medium. Fringe
shifts N are defined by

(2)

where X denotes a spec~ic wave length of light, and optical lengths
~1 and ~2 are associated with coherent light waves and are measured

from the light source to the plane at which interference is recorded.
Two or more light waves are coherent and, hence, maybe observed to in-

2% terfere at
y associated

x intercepts
O.d

A few
cal system

the interferometer image plane when any pair of ray traces
with the waves proceeds from the same light-source point and
the same image point.

representative ray traces throughout an interferometer opti-
are shown in figure 1. Interference at a given image point

may be represented generally in terms of one ray trace contained in the
test beam (trace 1), which traverses the test section, in conjunction
with a second ray trace contained in the reference beam (trace 2), which
circumvents the test section. However, it can be easily demonstrated
(ref. 8) that those fringe shifts which are of practical interest may be
expressed in terms of ray traces in the test beam alone. Thus, the
word “reference” will henceforth refer to reference conditions pertain:
ing to the test beam. The fringe shifts of immediate practical interest
are:

(1) Nc, associated with the refractive index change I-Lato I-L-

within the test section, where the subscript a refers to
atmosphere external to the test section, and the stiscript OB
refers to anibientconditions within the test section

(2) N, associated with the refractive index change V= to M with-

in the test section, where generally w = v (x,y,z) and x,y,z
are cartesian space coordinates

Let the x,y,z coordinate systembe a right-handed system, as de-
●

fined in figure 1. Then, including fringe shifts contributed by off-
axis points in the light source, it is shown in appendix B that

●

—
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VaD sin 9(-1) + paKL[sec qr(+l) - sec q(+l}]} (3)

J

where, as shown in figure 2, L is the test-section span, 9 is the
angle that a particular ray trace makes with the z-axis, D is the apti-
cal distortion which has been defined previously in reference H and
will suhsequentlybe discussed, and K is a fraction of the test-
section spin defined by

where the real object-plane

at the selected image plane.
(3),“exceptthose quantities
ray traces that traverse the

(4)

z = ~ is the real locus of ob~ects imaged —

All geometrical quantities in eqution
beering the stiscript r, are referred to
field V. The subscript r refers to ref- * —

erence traces that traverse the field \w-. Quantities denoted (-1) or

(+1) sre referred to the medium immediatelypreceding or succeeding the _ ~
test section (atmosphere,as a result of the present assumptions), re-
spectimly. Equation (3) represents a set of equations for each point
of the interferogram, one equation corresponding to each pertinent pair

—

of ray traces which intercepts a given image point.
.

If pa replaces k- as a reference and p reduces to the constant

value v-, then equation (3) reduces to

NC + v-L see ? -

which is nxmt comzonly applied

Nc =

paL secvr - paD sin$ (-1] , (~) _

in the psraxial form —

~ (IL-- Pa) L (3b)

associated with

Distortion

an axial point-light source (ref. 12).

of the locations of conjugate points canbe derived by
inspectionof figure 2. Thus,

— —

D= *~ZL - H)2 +21LH (1 - Cos U)]m (5)

.
where

If
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ZL =
{

t(2- z~)2+ 272= [1 - ICos. v (.+1)1]}=’2 (5a)

2 = ~ Isec 9(+1)1 (5b)

lr I=KL sec qr(+l)l (5C)

and v is the angle of refraction, H is the refraction displacement

g perpendicular to the z-axis at plane z = L, and u is the singleformed

-1 by the intersections of a trace through the field ~, its unretracted ex-
tension from plane z = 0, and the associated reference trace through
the field V- at, and in, the plane z = L.

Equations (3) and (5) are useful for starting the derivation of
interferogram-evaluation
field geometries and for
light sources.

equations for particular refractive-index-
investigating effects M extended or off-axis

d
have

APPLICATION TO ONE-DIMENSIONALDENSITY

Because of mathematical compltcationsj only
been considered:

(1) w = constant

DISTRIBUTION

the following cases

(3) w= w(r) (r2 2+#)or=x

v = w(R) (R2=~+#+z2)

in general, by equationAn evaluation equation for case (1) is supplied,
(3a) and for the particular ca8e of the axial point-light-source by
equation (3b). Evaluation methods for case (2) have been described in
references 7 to 11. Evaluation methods for case (3) have been described
extensively in several papers including references 1, 13, 14, and 15.
The present report is concerned with case (2) in which p is a func-
tion of a single cartesian coordinate, say y, which is perpendicular
to the optical axis. (The density p is related to the refractive
index by the Dale-Gladstone formula

v =l+kp

where k, the specific refractivity, is a constant for any given wave%
length.) However, it is noteworthy that equations (3) and (5) also re.
duce to the standsrd starting equtions employed for evaluating axially

d symetric distributions y(r) (refs. 1, 13, 14, and 15).
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Evaluation equations for density distributions of the form p(y)
are derived in series form in appendixes C and D by utilizing equations
(3) and (5). For simplicity the evaluation eqpations me expressed In
terms of the object-space coordinate y, which is related to the cor-
responding image-space coordinate y’ by

Y’ = -w

where .m is the lateral magnification introduced by the camera lens.
Also, the distribution p(y) is evaluated in terms of the density ratio
p*, where at a given ordinate value yO

P(YO)
P* =

Pa

The present evalwtion equations are,based, whenever possible, won
simplifying assumptions involving the independent variables of an ex-
periment, for example, refractive index, geometry of the phenomenon, or
geometry of the experimental apparatus, rather than, for example, the w-
light path. The principal additional assumptions are as follows:

(1) The refractive index u is a monotonic function of y along ?

any given ray trace.

(2) The function ~ is representable along any given ray trace by

the power series .X

.—
pq = bvqv, where the csrtesian coordinate ~ is

definedby q = y - Y~l* This permits simplification and extension of

the analysis to decreasing, as well as increasing, functions P(Y)●

Approximations are denoted one-term, two-term, ... according to the

nuniberof terms of the series ~bi~v which iS utilized.

(3) Ray traces are representable by the power series

in the interval o ~ ~ ~ L, where ~ S z.

According to the preceding assumptions, one- and two-term
are associated with the following additional assumptions:

One-term approximation:

(a) Along any given ray trace, M = constant.

n =D#

approximations

(b) The ray traces are straight lines through the test section.
K

(c) The measured fringe-shift profile is always ‘distortionless.

F
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(d) The measured fringe-shift
4 y or a constant for all values of

.

Two-term

(a)

(b)

approximateion:

Along any given ray trace

profile is a step function of
Y“ ‘

p is a linesr function of y.

The ray traces are parabolas within the test section.

(c) The measured fringe-shift profile is distortlonlesswhen
the selected object plane corresponds ta the midspan plane of the
test section.

One- and two-term approximations and the corresponding evaluation
procedures associated with an

One-term approximation:

Two-term approximation:

axial paint-light-source are as follows:

WV = b.

%
= bO +bl~

[
(a)p*=l +#-N~-~(2-3K)b~L2

m 1
(@y=y~=yD-D
(c) D=– Z+1(1- 2K) b1L2 (see footnote)

‘d) b’ ‘RI+ Qncidentd’y’bl=k($$)YO ‘ ‘sO)I
Evaluation procedure:

(a)

(b)

(c)

plOt N as a f~ctiOn Of yD graphically frOm measured
data.

At each datum point measure the slope of the resulting
profile ~.

For each datum point compute .bl,then P*, D, and Y.

(if necessary). The density ratio p* as a function of
y represents the desired profile.

—

~
The convention + or - is associated with p(y) increasing or de-
creasing, respectively.
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Although, when K = 1/2, the preceding one- and
equations are identical to the corresponding results
e~ence 11, important differences are made
namely!

(1) The present evaluationxequations
permit direct calculation of’ p without
cedure (refs. 8 to 10).

(2) The additional assumption dD/dy

&vident by

NACA TN 3340
w

two-term evaluation
indicated in ref- -; i=
the derivations,

apply for any value of K and
recourse to a shifting pro-

=0 (stated somewhat incom- %
pletely”as D = O in ref. UI is unnecessary (but instead follows as-a g-

direct result of the two-term assumption), so that mention in reference
11 of an iteration process for eliminating residual distortion is in-
consistentwith respect to the primary analysis.

.—

By relating derivatives of the measured fringe-shift profile to
derivatives of the correspondinghypothetical distortionlessprofile

—

and then to coefficients b~, it follows from the derivations in appen-

dixes C and D that, as a result of the two-term approximation,
~/dYD = dN/dy because dD/dy = O; that is, the slope of the measured

.-
e
—

fringe-shift profile at y = yD has the same value as that of the cor-
—

responding hypothetical distortionless-fri~e-shift profile at y = yo.
~::

Thus, correct values of the coefficient bl are presumably determinable —

from
and,

the measured fringe-shift profile associated with any value of K,
hence, the present equations apply for any value of K.

Theoretical Limitations

‘Theanalysis described in appendixes C and D can be used to obtain
theoretical information concerning limitations of the interferometric
method and the preceding evaluation equations and concerning the im-
portance of certain other systematic errors. Irithe succeeding gara-.
graphs the following items are considered:.

(1)

(2)

(3)

(4)

Establishment of a criterion for minimizing apparent-ray-trace —
crossing .-

Series convergence and the calcuMtion of remainders associated , _ __
with the finite approximations —

Establishment of a criterion
posed evaluation eqyations

Estimation of the importance
ment of the light source

for the applicability of the pro.- ___ .

●

of lateral extension or misaline-

v
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(5) Determination
*

(6) Estimation of

9

of desirable light-source geometries

the effect of test-section windows with respect
to off-axis l@ht-source points

Apparent-ray-trace crossing. - A~srent-ray-trace crossing, which
has been noted in references 9 and 10, occurs when the relative magni-

—

tudes of the initial ordinates y. and corresponding apparent ordinates
CN
P YD associated with any
4
Q the case of an inverted

sing are illustrated in
throughout the interval

pair of refracted ray traces me reversed (as in

mirage). Two cases of apparent-ray-trace cros-
figure 3. In figure 3(a) “crossing” prevails
for which

—.——
.—

whereas in figure 3(b) crossing occurs throughout the interval for which

‘d It is demonstrated in appendtx E that crossing occurs whenever

IIQ21AY-
Regions of an interferogram that are associated with crossing ex-

hibit multiple hagery in that records of two or more regions of the
field p(y) ere super~osed and interrelated. Such regions probably
cannot be evaluated unless one trace of each of the crossed pairs is
prevented from reaching the final image plane. Unfortunately, the ex-
istence of crossing may not be apparent from the interferogram. —

The possibility of crossing can generallybe alleviated by the
proper choice of K. It is shown in appendix E that, for arbitrary
functions p(y), apparent-ray-trace crossing is least likely to occur
when K = 1/2
criterion for
appendix E as
unlikely when

*1
z

8

is satisfied.

because dD/dy is essentially zero when K = 1/2. A
avoiding apparent-ray-trace crossing is also derived in
follows: The existence of apparent-ray-trace crossing is

—

the inequality

2

(- )1

(1-2K)k~L2+& (l-@ k&L2 =1 .-

The inequality maybe satisfied by properly selecting

4 K if information regarding the expected efireme value of d2p/d@ iS

available prior to the experiment.
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Series convergence. - It has been showiiin reference 9 that, if the
series expansions for v and q converge, then the resulting power
series for p* and D also converge. The_introduction of a laterally
extended light source still yields a convergent series, but differentia-
tion of series may not always yield a convergent series. In an arbitrary
experiment the existence of convergence is not assured, although it
would appear that the power series for p*

.-
and D are tiually con-

vergent or, at least, asymptotic because the one-term expression for &
has always been found to yield results which are in reasonably good
agreement with predicted physical values of p*.

The remainders associated with the one- and two-term approximations
of p* and D are given in appendix E, where reminders associated
with the two-term approximation depend upon the three-term approximation
which is..derivedin appendix F.

Applicability criterion. - A criterion for the applicability of the
two-term approximation is derived in appendix E. It is shown t~t the
two-term approximation is likely to be valid for at least those regions
of the field for which the second derivative of the measured fringe-
shift profile satisfies the

s<.+
XL

inequalities

it
UYD

Calculation of p* and D up to and including the two-term ap-
proximation is practical.. Higher-order approximations are excessively
complicated and sre limited by the inaccuracy of measuring higher-order
derivatives of N~–”Also, no practical situation has yet been en-
countered in which the additional terms involved in the three-term ap- ‘
proximation are appreciable.

Extended or misalined light source. - Estimation of the importance
of off-axis light-source points resulting from lateral extension or mis-
alinement of the light source can be made by inflecting the equations _
for p* and D wlich are derived in appendix C. Thus, if p and q

..-

represent coordinates of light-sourcepoints in a plane perpendicular
to the optical axis such that

.-

W

t.:

—
—

—

&+
to

—

-.

d=

P.

:-

.:

●

.
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P x + constant
I

SE! -l=.
ax

q= - y + constant
I

q ~~
dy

where the origin (pjq) ~ (0,0) lies on the optical
fects of off-~is source points me expressed by

and

Jd
0 where 5
2. its value
y the focal
x indicated
=4

firms the

5P*=O ifg)2,(:)2<Gl

m = o if ($)2,l$q <<l

axis, then the ef-

denotes the variation of value of the associated qpantity from
when the light source consists of an axial point, and f is
length of the collimating lens. The pertinent quntities are
in figure 4. Experimental evidence, which qualitatively con-
preceding conclusion, is presented in reference 8.

Light-source geometry. - It is found by inspecting the series ex-
pansions for P* and D in appendix C that, from the standpoint of
evaluation-equation simplicity, light-source geometries in order of de-
creasing desirability are:

(1)

(2)

(3)

(4)

Axial point

Narrow slit along p-axis

Narrow slit along q-axis

Extension in p,q-plane

Test-section windows. - For simplicity, the effects of test-section
windows upon N and D were disregarded in the preceding anal~is.
It is shown in aypendix E that window effects are negligible when

():2 <<1

and
●



12 ?NACATN 3340
w

Analytical Verification
w

The validity of proposed evaluation procedures can be investigated
and their limitations illustratedby calculating exactly the profile
ND associated with an assmued hypothetic~ profile p(y) and then by

attempting to recalculate p*(y) from the proposed evaluation equations
and the computed profile ND. However, the equations for computing ~

must be assumed correct and exact, or nearly so. Otherwise the”evalua-
tion equations may effect an excellent reproduction of the assumed pro-
file ~(y) although they are incorrect, as was the case in reference 16

The present evaluation eqpations were tested by assuming an exPo~
nential profile p(y). The profiles ND were calculated accurately and

the recomputed profiles p*(y) were calculated to one-, two-, and three-
term approximationsfor three values of K, namely K = 1/3, 1/2, and
1 and for two values of L, namely L = 1.8 and 3.6 inches. The equa-
tions for calculating ND are given in appendix G. The recomputed pro-

files P*(y) for L = 1.8 and 3.6 inches are presented in figures 5 arid
6, respectively. The two-term profiles for K = 1/2 and L= 1.8 and
3.6 inches sre compared in figures 7(a) and (b), respectively, with the
correspondingprofiles obtained by using the Wachtell-DeFrate method
(refs. 7 to 10).

A value of the exponential coefficient a (appendix G) was select–ed
that would introduce strong nonlinearities_inthe profile p(y) and
hence permit illmtration of limitations o: the interferometricanaly-
sis and evaluation equations.

For L =..1.8Inches, the two- and three-term approximations yielded
recomputed profiles p*(y) that are in excellent agreement with the
assumed profile p*(y) for all values of K (as suggested in the pre-
vious discussion) and represent definite improvements over the results
of the one-term approximation. It is apparent from figure 7(a) that
the two-term approximation for K = 1/2 permits evaluation closer to
the surface (y= O) than does the Wachtell-DeFrate method. Inparticu-
lsr, p(y) is only determinable for

For K

exceed
of the
good.

> 0.0032 inch for K =Y= 1/3 (method of refs. 7 to 10)

y= 0.0012 inch for K= 1/2 (method of present report)

—

=
.-

,.

4

-.

. .

1/2 and 1 the maximum absolute magnitudes of d2N/d~ slightly _=

the values set by the applicability criterion, but the agreement
two-term result with the ass-d profile p*(y) is still very :-- &

v
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w
P
C9
4

The ratios of successive terms of the series expansions for P*

Q and D are proportional to L. Therefore, as L is increased, higher-
order terms increase in relative importance. For L = 3.6 inches, the
two-term approximation represents an improvement over the one-term ap-
proximation, and the profiles for all values of K are in agreement;
however, because of the increased value of L the Y interval of good
agreement with the assumed profile P*(y) is considerably reduced. In
particular, the recomputed profile P*(y) for K = 1/3 is strongly af-
fected by a psrent-ray-trace crossing and the recomputed profile P*(Y)

?for K = 1 2 is slightly affected, as is apparent from figure 8. How-
ever, distortion is smallest when K = 1/2 and is an absolute over-all
minimum for some plane in the interval l/2<K<l,asfs ~dD/dy1.

For all values of K, the maximum absolute values of d2N/d$ exceed

the values set by the applicability criterion. However, the profiles
P*(Y) recoq?uted according to the two-term approximation do not begin
to deviate appreciably from the assumed profile until the criterion has
been definitely violated. Thus, it maybe tentatively surmised that
the applicability criterion is somewhat conservative. The three-term
profile p*(y) is strongly affected by the preceding difficulties and

● is less useful than the profile obtained from the two-term calculation.
According to figure 7(b) the Wachtell-DeFrate result is again limited

i to a smaller y interval than the present two-term result.

Experimental Verification

In order to verify conclusively the existence and nmgnitude of the
optical-refraction effect, an experiment was devised for measuring the
effect and confirming the refraction terms associated with the two-term
approximation of p* and D. Good agreement was obtained between
theory and experiment. Details
cussed in appendix H.

Comparison

and results of the experiment are dis-

with Other Analyses

Objections to analyses presented in references 16 and 17 have been
discussed in references 9 and 10. Objections to the analysis in refer-
ence 11 have already been discussed-in the present report.

—

Results given by the two-term equation derived independentlyby
Wachtell and DeFrate (refs. 7 to 10) sre equivalent to those givenby
the present one-term equation when K = 1/3. The former equation may
be readily derived from the present two-term equation. For any other
selected value of K, Wachtell in references 9 and 10 proposed ak
“shift@g” procedure by which an uncorrected density profile is com-
puted and then corrected by means of shifting equations to give the

—
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●

mrofile associated with K = 1/3. However,””ifapparent-ray-trace cross-
ing occurs when K = 1/3, then’the entire method
sity profile must be corrected to K = l/3d For

b1L2
D =A~

so that a ray trace that satisfies y = O at z

fails because
K= 1/3>

= O. where Y

.

= O remre- “~
sents the s&ace of a model, will generally appear at y = D # O (ref.
8). Thu8, the Wachtell-DeFrate method can Qnly be used to evaluate ~.
p* in the immediate vicinity of a surface when (dp/dy)~ = O. :

By conp.risen, failure of the present method resulting from
apparent-ray-trace crossing should not occur because the corrected den-

.:

sity profile is associated with the selected value of K, rather than
with K = 1/3, specifically. Generally, a value of K can be chosen

.-

for which crossing is absent. Moreover; the co~uted distortion is zero
if K= l/2. However, slopes @dyD mUSt be measured, and a refrac-

tion term must be computed in calculating P*. On the other hand, 4
p*(y) can be computed for any other selected value of K without re-
course to a shifting procedure if D is computed. The total amount of
computation is equivalent to that of the Wachtell-DeFrate method with g
shifting.

In reference 8 an iteration procedure_is proposed which presumably __ __
can be applied when P(Y) is extremely nonlinear and when there is no
ap,parent-ray-tracecrossing. However, the iteration method in compari-
son with the preceding approximation methods necessitates an excessive
amount of computation and some degree of guesswork.

—

Lewis Flight Propulsion Laboratory
National Advisory Committee for Aeronautics

Cleveland, Ohio, Noveniber19, 1954
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SYMBOLS

The following synibolsare used in this report:

a

by

bv,l’bv,2

c

c

t
%,v

D

e

f

E

K

k

II

2L,2,2r

● Ill

N
d

exponential refractive-index-distribution coefficient

refractive-index coefficients

refractive-index coefficient; first and second approxima-
tions, respectively

constant”

velocity of light

light-path coefficients

light-path coefficients

fringe-shift coefficients

optical distortion

exponential

focal length of collimating lens

refraction displacements
z =L

fraction of test-section

constant, ~,a = T - UK

specific refractivity

test-section span

of ray traces

span,K=l-

lengths givenby equations (5a.),(5b),
tively (fig. 2)

lateral magnification

interference-fringe shift

in and at plane

%
-z-

and (5c), respec-
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‘o

ND

n

P

~

R

R

r

s

T

t

t

t

u

v

X,y

Y~

YD

z(t)

z

zR

NACA TN 3340
?

function representing hypothetical distortion-free -=
interference-fringe-shiftprofile 9=

function representing measured (distorted) interference-
fringe-shift profile

-
., -~

w
integer -.

light-source coordinate parallel to x-coordinate

light-source coordinate psrall~l to y-coordinate —
. .—

radius in spherical coordinates

remainder

radius in cylindrical coordinates

length measured along ray trace

absolute temperature

the

●

window thickness

quantity defined in appendix G —

angle formed by intersection of refracted-ray trace, its
unretracted extension from plane z = 0, and its associ-
ated reference trace a~, and in, plane z = L (fig. 2)

refraction angle of refracted ray-trace (fig. 2) —

csrtesian coordinates perpendicular to optical axis

y-coordinate value of ray trace at plane z = O; y-coordinate
values associated with profile No —

apparent y-coordinate value of source of ray trace;
y-coordinate values associated with profile ~

—.

axial separation @ real- and apparent-objectplane —

optical axis —
s

real-object plane

9
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(-2),(-1)

(+1),(+2)

projected

projected

projected

increment

variation

ray-trace

ray-trace

angle in xy- or ~rj-plane

angle in yz- or ~~-plane

angle in xz- or ~~-plane

or change

coordinate

coordinate

coefficients

wave length of light

refractive index

integer

ray-trace coordinate

density

parallel to optical axis

perpendicual to o@ical axis

perpendicular

density ratio, p* = P(Y())/P=

integers

to optical axis

angle formed by ray trace and optical axis

optical-path length

refers to mediums preceding test section

refers to mediums succeeding test section

17

Subscri@s:

A refers to lower surface of upper block in hot-plate model

a atmosphere

c refers to change of refractive index within test section
. from that of the esrternalatmosphere to some other con-

stant value

i
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g

r

w

m,n,v,cr,’C

v

Superscript:

NACA TN 3340

window

reference ray trace

value at wall, or surface

integers

refers to anibientconditions within test section

t refers to image space associated with camera lens

maximum absolute value

k

.-

—

—
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APPENDIX B

GENERALIZED FRINGE-SHIFT EQUATION

In general, the interference fringe shift measured at a given image
point is represented by equation (2), namely

The quantities T1 and T2 are determined

whose paths in any given optical redium are
partial differential equation (ref. 18)

(2)

from associated ray traces

found from

[

Equation Bl) is the solution of the variation problem
equation 1), where V = P (x~y~z) may be an arbitrary
cartesian coordinates x, y, z.

the first-order

(Bl)

indicated by
function of the

St
If ~1 and T2 are associated with ray traces which traverse the

fields v and V=, respectively, then @ = ~1 - ~2 iS determined by

ray traces 1 and 2 in figures 1 and 2; these traces satisfy the re-
quirements for interference because they are parallel in the space pre-
ceding the test section. It is shown in references 7, 8, and 11 that
A* iS de-tertined entirely in the interval bounded by the plane wave-
fronts in the medium (-l), which immediately preceeds the test section,
and by the effective plane, or spherical, wavefronts determined by
traces 1 and 2 in the medium (+1). Thus, N maybe expressedby inspec-
tion in terms of the geometrical quantities shown in figure 2. The re-
sult is equation (3), in which the first term on the right-hand side is
attributed to the trace through the field p, the second term to the
trace through the field V=, the third termto obliquity of traces in
medium (-l), and the last term to obliquity of traces in medium (+1)
plus refraction.
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APPEmnx c

DERIVATION OF EVACUATION EQUATIONS ASSOCLATED WITH A

ONE-DIMENSIONALDISTRIBUTION ~(y)

Light Path

Light ray traces are determined by

(Bl)

For a function p = p(y), equation (Bl) possesses a solution of the form.—

V(X,Y,Z) = *1(X) + *2(Y) + $3(Z)

namely

ryl. *

where

are constants. Applyiug Jacobi’s theorem (ref.
for ~ to solutions for the ray traces, namely

-&P-=”ng=+

g=k L~-=ta.

c1
Initially, when

18) reduces the solut~on

P

a

then

a = Lx(xo) p =-p(o)

u
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and the constants C!l and C3 are given by
w

[( )]IJYo 2 tan2 y(0)
c: .

l+tan2 B(O) +tan2 y(0)

[( )]IJYo
2

c: =
l+tan2 P(O) +tan2 T(0)

where

dx
—=tany
dz

Thus, the ray traces are given by

k

t where

2
1 +(% ) [1W(Y) 2+tan2 y(0) =- sec29(0)

sec2 g(0) = l+tan2 B(O) +tan2 T(O)

and

g
= constant

(cl)

Equation (Cl), which applies when ~(y) is an increasing function,
can be extended to include cases where V(Y) is a decreasing function
and, also, ultimately to lead to simpler evaluation equations by intro-
ducing auxiliary, floating, coordinates ~, q, ~ definedhy

The coordinates of any given ray trace are then (~,~~~)~ (0,0,0) at
Z=o. In terms of the new coordinates, WV corresponds to v(y) and
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Then equation (Cl) becanes —

●

(Cla)

If ~~ is rewritten in the form

(C2)

where, for gases,

(C3)

then equation (Cla) reduces to .

()a#=
2 flp~sec2q0 +tan2 PO (Clb)

where terms in (&V)2 are infinitesimals of higher order as a result
s

of conditions (C3).
#

Generally Ayn is not constant. Then V7 may be represented by
the power series

((74)
—

=Vq Ibvy-
Yolv

=
(C4a)

.,

where

(C5) t

and

~.-
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Also, let the ray traces be represented by the lower series
d

, = ~ co~~
a=o

where

Utilizing the asstnnedseries (C4) and
solution of equation (Clb):

()1 d“y*——
a! dzu

o

(C6) results in the following

(C6)

(C7)

b

where the coefficients c% are functions
namely

k

(c%)

of the coefficients bv;

. . .

. . .

(C9)

and the coefficients cd are given by

Co=o

because ? = O at ~ = O, and

{

c* tan f30seca-l (pO
a (a odd)

cc = (Clo)
C$ see ~ (a even)

Expressions (C9) me obtainedby substituting series (C4) and (C6) in
equation (Clb) and equating coefficients of like powers of (. Coeffi-
cients c% (u even) are identical to the coefficients cc defined in

reference 11 for the case of an axial point-light-source.
.

Solutions of equation (Cl..)for special light-source geometries sre

●
readily obtainable from equation (C8):
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e

(1) The identity (p,q) s (0,0) represents an axial-point light
source. Then PO = To = O, and equation (C8) reduces to the ray-trace “-- @ .

equation, which was derived in reference 11.

(2) The identity (p,q) S (P,O) re_!?resentsa narrow slit-light- . .:
source parallel to the x-axis. Then 130= O, and the resulting simpli- -

fication of equation (C8) is obvious.

(3) The identity (p,q) s (O,q) represents a narrow slit-lfght-
source parallel to the y-axis. Then To 5= O, and the resulting simpli- _. .m

fication of equation (C8) is again obviouq. -. —

It should be noted that equation (C8) increases in complexity in the
order (1), (2), (3) of the preceding Iight:source.geometries. —

optical Distortion

Because the general fringe-shift equation (3) is a function of the *.
optical distortion D, the distortion will be considered first.

According to equation (Cl) individua~rayt races in the field p(y) 9

are refracted in planes. Then, from figure 2,

u= o

and equation (5) reduces to

D=H- z~

However, as seen from figures 9(a) and (b) which depict ray-trace pro- -
jections in the xz- and yz-planes, respectively, -.

H -D +KLtan~o=Kltan PL

where f3= 13L at ~ = Lj therefore,

D= H- ~ (tan PL - tan PO) (Cll)

By definition, H = ~~=L and tan ~ = d~/d~, so that in series form H —

is given by series (C8) with ~ replaced by L, and tan ~L is given

by the first derivative of series (C8) with ~ replacedby L. Per-
-.

“forming the a~ropriate substitutions in equation (Cll) and reducing s...
the resulting expression the equation fo? D> expresse~in series form) _
becomes

w
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where, by definition,

(clLa)

The algebraic
coordinate y
ohject point.

sign of D has %een chosen to be consistent with the
when D is measured with respect to the distortion-free
The resulting sign convention with respect to D is the

reverse of that used in reference 11.

When (p,q) S (0,0), eqwtion (Clla) reduces to the distortion
equation that was derived in reference 11.

Fringe Shift

y
~“ When W= N(Y) the integral in equation (3) may be rewritten for

stisequent simplicity in terms of Vn and the coordinates ~t ?> ~. ,

8 Then, by successive mibstitutions -

where terms in (@V)’ exe infinitesimals of higher order. Because

pq=l and test-section windows sre disregarded, the following approx-

imations can be made regarding q, especially when 9 is small:



26 NACA TN 3340

sec q= = sec Q.

sin Q(-1) “ sin 90

sec Qr(+l) = sec q.

sec q(+~) = sec qL

However,

sec 9L= (l+tan2 BL+tan2To)1/2

YH— sec *o
= W()

Substituting the appropriate preceding quantities in equation (3) yields

sec ~o

[ J’L4#N=~(I-Lo-w33)L+2 o
- f@H~ -D sinwo cosqo 1

(C12)

.

Equation (C12) canbe derived in a more exact formby determining the
exact expressions for the various angles Q as functions of q. and

retaining the multiplicative constants involving p=, Va) and ~.

However, the additional work required is excessive and yields additional
terms which are appreciable only when q is impractically large. men

—

rewritten in series form, equation (C12) becomes
—

—

m w

Cr+l (’zKE~ %ICG,VL - * K1,ac#ti+ KL tan PO
) 1sin Q(-JCos 90

v=l a=l U=l

(C12a)

where the coefficients c~,~ are functions of the coefficients Ca -

obtained by equating coefficients of like puwers of ~ in the expression ? -

w
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The density ratio p* is obtained by solving eqwtion (C12a) for
P- P., tiiltzing the Dale-Ghadstone formula, and ditiding both sides

of the equation by P.. Thus,

When (pjq) s (0,0),
responding equations for

.
The angle Q o is a

)tan PO sin Q 0 cos qo1 (C13)

e;m&#~a) ~d (c13) reduce to the COr-
that were derived in reference 11.

function of angles 130 and TO. Moreover, 90

and TO me related to the coordinates (p,q) of the light source.
% Specifically,

tan PO = +:

(C14)

tan TO = A$

The conclusion stated in the section Extended or misalined light source
then results from equations (Clla), (C13), and (C14).

Eqyations (C1l.a)and (C13) yield practical evaluation eqyations
for D and p*. However, the coefficients ~, Ca, and Ca,v must

first be expressed as functions of measurable quantities. The coeffi-
cients ‘a and Ca,v cme functions of bv. Relations permitting the

expression of coefficients b v as functions of measurable quantlties
are derived in appendix D.



28 NACA TN 3340
.

AFPENDIX D ——

RELATION BETWEEN MEASURED AND DISTORTIONLESS FRINGE-SHIFT PROFILES

ASSOCIATED WITHA ONE-DIMENSIONALDIST!RIBIECIONP(y)

The coefficients Ca, v, LIP to c4,2J .~e given bY

C2,1 = C2
~2

C2,2 = --l

C3,1 = C3 C3,2 = 2c~c2

-.

(Dl)

=4,1 = C* c4,2 = c; + 2cIc3.

Coefficients c= are given by equetions (C1O), and coefficients c% sre

given as functions of bv by expressions (C9). The coefficients by

can be related to measurable space derivatives of the measured fringe- __..
shift profile by considering the relation .@tween..spacederivatives of. -=..
the measured fringe-shift profi2!eand derivatives of the corresponding
profile,>hat would result if distortion were absent.

a

.—

—

.—

A.—

-a

—

Let

(1) No(y) denote the fringe-shift

if distortion were absent

profile that would be measured

(2) ND(y) denote the observed fringe-shift profile

The y component of separation of the profiles No and ~ is the
—

distortion D. The y-coordinate values associated with a given value
No = ND are Yo an~ yDj respectively, where

YD=YO.+ D..

and D = D(YO). In equations (Clla) and (C!12a)

—.—

(D2)

all quantities, except

N, that sre vsriables when associated with a single interferogr~ are .
defined with respect to initial values Yo. Hwever~ N iS associated

with values yD. If the fringe-shift profile is distortionless, then w_
ND s No and is associated with values YO.

u
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Consider figure 10, which illustrates hypothetical profiles ~

No. In a given fixed interval ANj the incremental slopes of the

profiles NO and ~ are, respectively, (~/AY)yo and (~/AYD)n.

The ratio of the slopes is

However, it results from equation (D2) that

Therefore,

uLN 1 ()AN

~=—— ~+sfwyo
* YD Ay

In the limit, as ~ +0,*

(D3)

Relations between higher derivatives of the fringe-shift profiles
may be determined by differentiating eqmtion (D3) with respect to yD.

Thus, the nth derivative is given the recurrence formula

()
~n-lN

dy&
(D4)

Derivatives dnN/d~ sre determined from the measured profile ~,

—

..—

whereas derivatives dnN~d# maybe expressed as functions of by by

differentiating equation (C12a) with the final distortion-contribtied
term omitted (because dnN/d~ involves no distortion). By direct sub-
stitutions equations (D3) and (D4) become~ respectively~
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(*D),D=-
v =

(D3a)

(D4a)
—

which include the effect of off-axis source points.
.

The coefficients L
‘and cb’) Ca>, U,v

are functions of y and can be differentiated. Eow-

ever, derivatives of coefficients bv are functions of other coeffi- *
eients bv+n, namely

(D5)

a. as a result of definition (C5). Computations involving a finite number
of terms in equations (D3a) and (D4a) and including derivatives of ND

.—

up to~the IUthderivative must only include coefficients bv up to bm

in order to be consistent. Eqmtions (D3a), (D4a), and (D5) then yield
expressions for bv as functions of measurable derivatives dnN/d$.
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LIMITATIONS OF

WITH A

APPENDIX E

TWO-TERM EVALUATION EQUATIONS

ONE-DIMENSIONALDISTRIBUTION

ASSOCIATED

P(Y)

Apparent-ray-trace crossing. - The condition associated with
apparent-ray-trace crossing can be developed by considering tio ray
traces whi& possess initial values y. and y. +~o, respectively, at

z = O, where Yo+AYo>YO~ Suppose distortions D(yO) and

D(yo + Aye) are associated with the respective traces. If’

IY() +&o + D(YO + &()) t> ~yo+D(Yo)l

then “crossing” does not occur because the larger initial and apparent
absolute y-values =e associated with the same ray trace.’ However, if

L
Yo + @o+D(YO + ‘yo)ll~lyo + D(Yo)l

then “crossing” occurs because the trace possessing the larger absolute
initial value possesses the smaller absolute apparent-value. When the
equality is satisfied, the apparent-objectpoints are superimposed. By
subtracting y. and D(yo) from both sides of the preceding equation

and dividing by Aye, the following ineqmlity results:

(El)

where

AD “= D(YO) - D(YO +&o)

W=YO+AY()-YO=AYO

A practical criterion for avoiding apparent-ray-trace crossing may
be derived from ineqmlity (El). The limiting condition for crossing
occurs as Ay ~ O. Then, inequality (El) becomes

Id
~>~—=
d

—
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The derivative of D canbe calculated from equation (Clla). Thus,

which for the case of an axial point-light=sourcebecomes

Corresponding to the two-term approximation,

Hmdy=o
because equation (E2) is ultimately independent

three-term approximation, equation (E2) becomes

II

dD
— = K1,2h2L2 +~K1j4b~L4
dy

(E2)

of bl. However, in the

(E3)

With convergence assumed, equation (E3) indicates that ldD/dyl= O to
a first approximationwhen K = 1/2. Also.,equation (E3) yields a
criterion for avoiding crossing. If the coefficients bv (v > 2) ere

assumed to be insignificant,then ldD/dylS 1 when

I b L2 + ~ ~,4b~L41S 1
‘1,2 2

(E4)

When apparent-ray-trace crossing exists, the experiment must be
repeated using another value of K because none of the evaluation
methods ap~ly. Thus, it becomes desirable to exp?ess inequality (E4)
in terms of quantities that might be esti~ted before the experiment
is performed so that a value of K which will avoid crossing can be
selected initially. The most useful result is obtained by expressing””
b2 as a function of p, namely

k d2pb2=f-—
2 d~

which results from the Dale-Gl&dstone formula and definition (C5). Then,
inequality (E4) immediately becous the crossing-criterion inequality -
given in the section Apprent-ray-trace crossing.

*

.

&
!-i
to

— a

-“—

—
—

—

—

.

-.-. --
.- =-

—

.
—
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Series convergence. - The series remainders associated with the
. one-term approxhation sre given by the additional term contained in

the two-term approximations. The remainders associated wfth the two-
term approximations of p* and D are given by the additional terms
which are contained in the three-term approximation derived in appendix
F. However, because in the third approximation the expression for bl

becomes modifiedby the multiplicative factor x#’% the addftfo~l
term involving 5bl arises.in the remainder equations. The remainders

In

&

associated with the two-term approximation

l~(P*)l ~
+d%3w2~1

sre, therefore, given by

1
+ ~ ~ 5%? 3b2L4)> Y

where

%
‘l’iT-l

33

In general,

where ‘C and u are integers, and the selected values of the conibina-
S tions b? 3b2 and bl ~b2 correspond to the largest absolute values

(denoted ~y bars) in tie interval y. ~ y ~ y. + E traversed by a given

ray trace. The constants Xl and X2 maybe calculated according to

the method described in appendix F.

The present analysis canbe applied to develop residusl-error
expressions associated with the Wachtell-DeFrate method also.

.
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Applicability criterion. - The profilg ‘2 b L2 shown in figure72
-i

11 as a function of b2L2 (cf. appendix F) are’a~roximately straight
lines with a slope of unity in the vicinity of the origin. Thus,
%2 %2

T - 1, from which it follows that lb2j<~l. However, for 10 IbL2

%
72

sufficiently large, the profiles deviate drastically from a straight –
line thus indicating that ~b21 increases considerably. In fact, when

I L21d2N/dy2 CO, increasing values of b
D 2

eventually correspond to de-

10 I
X2

creasing values of ~ ~2L2 ; this condition is absurd from practical
Ml

considerations. The”po&ts at which the slopes of the profiles become

zero ~d2N/d# <C)) maybe considered, somewhat arbitrarily, as the

extreme limits for which %me!t values of b2 are obtained. The de-

fined linits correspond to fixed percentage deviations of the ratio.-
x2/x~ from unity, ~ly

100% when K

30% when K

60% when K

Let the preceding percentage deviations

d2N/~ >0, dSOsof the profiles for

= l/3

= l/2

= 1

determine the practical limits
Then because

%2 d2N kL
y %L2 =*——
%1 22

WD

the indicated limits correspond to

d2N h-o.8<*— — <0.8 when K = ~Q: 2 2

d2N & <o 3“ when K
-o”4<*q2 “ ‘1

—

—

a

.

b

.

.
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The inequalities listed in the
. immediately from the preceding

35

section Applicability criterion result
inequalities.

Test-section windows. - If the test section is bounded by windows,
then mediums (-1) and (+1) correspond to the initial and final window,
respectively, and Ahe external atmosphere is contained in medim (-2)
and (+2). It has been demonstrated in reference 11 that, associated
with an axial point-source, the additional optical-path differences con-
tributed by

and, in the

the presence of windows are: in the final window,

vgt [see q (+1) - 11

atmosphere succeeding the test section,

Va [m - Z(t) +t~ [1 - secq (+2)]

Jd where Vg is the refractive index of the window and t
o
@ thickness. The axial separation Z(t) of the apyrent-

+
lo”

planes is given by

$

for
(1)

and

small angles Q, but is exact according to
in the section GENERALIZED EQUATIONS.

If off-axis source points are considered,
(E6) are replaced by

(E5)

(E6)

is the window
and real-object

(E7)

the initial assumption

then contributions (E5)

Ugt [see Q (+1)- sec ?r (+1)] “ (E8)

and

() IJa
t [secqr (+2) - sec Q (+2)]LlaKG+< (E9)

respectively, where Z(t) has been replacedby the right side of expres-
sion (E7). The initial window introduces no additional contribtiion to
the optical-path difference because associated ray traces are parallel
within the window.

In reference 11 it has also been shown that terms (E5) and (E6),
with the quantity KG omitted, cancel to a high order of approximation.
With terms involving KL disregarded, the only possible additional terms
of appreciable magnitude contributed by the window are, therefore,
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I.lgt[1 - f=wr (.+1)1

and

2
~t [see ~ (+2)
Pg

- 1]

(El~)
..

These terms, which result from off-axis source points, also cancel 33?
sec ?r (+1) and sec Qr (+2) are of the same order of _itude as

secq (+1) and sec q(+2). !&e preceding cancellationsresult whm--
q. is zero, in which case the ray traces are givenby

sec fl= 5
l-+)

If q. is not zero, then the ray traces are

sec @ =

which is simply equation
lations result when

and

given by

11/2
.

(Cla) rewritten.
.

Thus, the preceding cancel-

secz?o ‘1

tan2To ‘o

or, in other words, when

tan2 To =
()
:2<<1

The only remaining term of appreciable magnitude is then

vaKL [see@r (+2) - sec q (+2)]

which is actually the last term in equation (3).

—

.
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.
APPENDIX F

THREE-TERM EVALUATION EQUATIONS ASSOCIATED WITH A

ONE-DIMENSIONALDISTRIBUTION ~(y)

Assuming that Vq = b. + bl~ + b2~2, the evaluation equations
w
g associated with the three-term approximation are

.

4

(1)

(2)

,
(3)

(4)

(5)

(6)

(7)

The

(1)

(2)

(3)

(4)
d@yD .

(5)

P* (
=1+~ N;-~K2,3b$L2

m.
- & K2,5b&2L4)

y=yo . yD - D

D ~ ‘1,2b1L2 +* Kl,4b1b2L2=*-

x.=
1

bL2+
1 + ‘1,2 2

X2=1+:

evaluation

~ ,3b2L2

+ ~ 4(b2L2)2
Y

+ $ ‘2,5(b2L2)2

procedure is$

Plot IV as a

At each datum

plOt @dyD

At each da.twn

function of yD graphically from measured data:

point measure slope ~/dyD of the profile ~.

as a function of ~.

point measure slope d2N/dfi of the profile

For each datum point compute (x2/x:)b2L2.
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from

(6) Select appropriate

figure n(a) or n(b),

plot of b2L2

depending upon

as a function

$he algebraic

‘NACATN 3340
L

of (X2/@b2L2

sign of .-

which corresponds to thed2N/d&, and determine the value of b2L2

appropriate value of K and to the computed value of (xO/x~)boL~.
.

(Plots of (x2/x~)b2L2 as a function of b2L2 are givenGin’fi&es

U(a) and (b) for K = 1/3, 1/2, and 1 and for d2N/d& >0 and

d2N/d$ <0.)

(7) For each”datum point compute b2 = (b2L2)/L2.

(8) For each datum point compute Xl and x z.

(9) For each”datum point compute bl, then p*, D, and yo. , ._.

The density ratio p* as a function of y represents the desired
profile.

The measured quantity N and the computed quantities dN/dyD)

d2N/d~ are associated with the measured profile ~ and values yD. .

All other quantities which are functions of y are associated with

distortfo~’ess values Yo = Y*

—

——

.“

.
—

The profiles (X2/x~)b2L2 as a function of b2L2 were obtainedby

choosing values of b2L2, comtiing xl) X2> and then (x2/%~)b2L2 for

a given value of K. Thus, profiles can be_readily determined for other
values of K.

.
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ATPENDIX G

EQUATIONS FCIRCALCULATING PROFILE ~ ASSOCIATED WITH A

HYPOTHETICAL EXPONTJ!TIAL-DENSITYPROFILE

In order to calculate the profile

hypothetical profile p(y), the asswned
such that

~ associated with an assmned

profile p(y) must be selected

PY()+H

and
.

which are involved in computing Nj, are readily inte~able in exact,

or nearly exact, form. Among possible assumed distributions P(Y) an
e~onential function, which corresponds to the refractive-index dis-
tribution

where p=~ at y= O, and a is an arbitrary constant, permits the

required integrations and corresponds vaguely to a possible boundary-
layer profile.

With an exponential density distribution and an axial point
assumed, the ray-trace displacements Hat ~= L are givenby
solutton of equation (Gl), namely

[
H=aln~

1
(1 + cosh t)

where

f30urce
the

(G2)
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—

The ray traces satisfy

Y= Y~ at (=0

Y= yL at ~=L

where

YL =yo+H

At y = yo,

w(Yo) = P-- (v-- ~)e
-y~a

.

—

(G3a)

At y= yL,

(G3b)
●

The fringe shifts and distortions are given by eqyations (C!12)and
(Cll), respectively, which become in the present instance

—
-.

(G4)

D=H- W(YO)I m (G5)

In order to recompute p*(y), values of the derivatives dnN/d~

must be determined. Theoretical values of dnN/d~ can be computed.

Derivatives dnN/d@ ue obtainedby differentiating equation (G-4),
with W(yo) and M(yL) replaced by the right side of equations (G3a)

and (G3b), respectively. The required first two derivatives sre given

.- —

—
by

(G6ti)

—
—

&
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where
.

and

co

&“

($) =-5%),0
Yo

d~
()

P“ - V(YL)

GYL= a

(a)yL=-*WYL
Derivatives dnE/d~ follow from eqyation (G2). Thus,.

where

Sinh t g
dH
F’a 1 + cosh t

()

dt 2 d2t
+sinht —

d2H a ~ d$—=

dy2 1 + cosh t

d2t t—=—

dy2 -2

41

(G7a)

(G7b)

(G8a)

(G8b)

(G9a)

(G9b)

(G9c)

(GIOa)

(Glob)

.
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Derivatives dnN/d~ are functions of derivatives dnN/dfl given

equation (D3) and the recurrence formula (D4). The required first

3340

by

two .

derivatives of D me obtainedby differentiatingequation (G5) folbw-
ing the previously mentioned substitutionsfOr V(yo) and ~(yL). men,

all d2H
-=+2aK—

~-dy d#’
(Glla)

d% _ _+2aJsed2H ~
(Gllh)

dy2 d$
M

d@

The profile NjI is determinedly
and the derivatives dnN/d$ (n= 1,2)

(G6) to (Gil).

computing equations (Gl) to (G5),
are calculated from eq~tions

The selected values of the constants were

v“ = 1.0000792 (Q

VW = 1.0000475 (Pw

a= 0.0056 in.

A= 2.15x10-5 In.

= 6.77x10-4 slug/ft3)

= 4.06%10-4 slug/ft3)

(mercury green line)

x= 0.117 ft3/slug

which, except for a, are identical to the values involved in the
example of reference 1-1.

.-

.-

.

.

—

.
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ATPENDIX H

EXPERIMENTAL VERIl?ZCATIONOF REFRACTION EFFECT \

The conduction of heat by air between two horizontal surfaces pro-
vides a readily yroduced and reasomibly predictable density distribution
which maybe utilized for veriffing the refraction effect and two-term
evaluation equations. Consider two identical rectangular-shaped blocks
placed one above the other and separated by a mall distance, with fac-
ing surfaces A and B corresponding to the bottom surface of’the top
block and the top surface of the bottom block, respectively. S~ose
that both blocks contain a reference hole which extends throughout the
horizontal length of the block and is oriented ~arallel to the optical
axis of the interferometer.

When the upper block is heated, a constant temperature gradient is
produced in the airspace between the blocks, whereas the temperatures
within the reference holes are constants. If the blocks are good heat
conductors, then the temperature T1 within the reference hole through

the upper block and the temperature TA at surface A are equal. How-

ever, (dp/dy)l = O whereas (dp/dy)A= constant # O, so that light which

traverses the,space between the blocks is refracted whereas light which
tiaverses the reference hole is not. Thus, the optical-path difference
between light passing ad$acent to A and light traversing the reference
hole sho~d theoreticallybe given by

and the distortion should be given by

(HI)

(H2)

These equations contain only contributions attributable to refraction.

In order to properly associate the refraction and reference fringes,
the algebraic sign of the fringe shift corresponding to the reference
region in the lower block must be determined. Because T2 <Tl, where

T2 is the temperature of the lower block, 1.42> VI, so that N2 > 0.

Therefore, it follows from eqyation (Hi) that:

.

.
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(1) If K<2/3, then NA>O and the fringes between the bloc& .—

are displaced toward the zero-orderfringe in the lower reference region
(fig. 12(a)).

(2) If K = 2/3, then NA = O, that is, no fringe shift occurs

(fig. 12(b)).

(3) Tf K > 2/3, then NA <0 and the fringes are displaced away
from the zero-order fringe in the lower reference region (fig. 12(c)). F --

~_.
A corresponding interferogramutilizing unfiltered light will permit N._
the zero-order fringe to be distinguished.

The model shown in figure 13 was constructed in order to simulate
the aforementioned conditions. The model consists .oftwo DuraMminum
blocks 10-inches long which are sepsratedhy two 0.14-inch thick, 10-
inch long insulating strips of glass. The top surface of the upyer
block is radiant-heatedby a Nichrome-wire heater consisting of Nichrome

.-

resistance wire wound with varying pitch around a thin sheet of mica.
The heating element and most of the upper block are insulated from the
external atmosphere by a Transite lid in order that the heat-flow rate

.—

from the upper block to the lower block will be a maximum for any given
heating current. A reference hole was machined the length of each
block, and a reference pin was projected into each reference hole for

..

focussing purposes and as a measuring reference.

Figures 14(a) and (b) depict typical interferograrusof the heated
air for K = 1/2 and 1, respectively; these interferogramswere ob-
tained by utilizing unfiltered light from a magnesium spark in conjunc-

—

tion with a horizontal slit. It is apparent that the temperature gra-
dient between the blocks is nearly constant. Curvature of the fringes

—

near the upper surface of the lower block is caused by reflection.
—

In figures 15(a) and (b)y experimentally determined values of
optical-path differences and distortion, respectively, are compared ,<
with theoretical values indicatedby equations (Hi) and (H2). The
quantities NAk and DA are plotted with respect to the generalized — —.

coordinate (~/d~)Ak which fields a single curve for all wave lengths

A. Actually, the experimental data include measurements at two wave

lengths, namely 4481A (nmgnesium spark) am 5461 ~ (mercury arc).
Agreement of the experimentally determined points with the predicted -
curves is regarded as good considering the errors involved in the ex-
periment and the fact that the difference in values amounts to the
error of measuring a small error.

The most important experimental eriors probably were end effects,
thermal expansion of the apperatus, nonuniform heating of the apparatus, --
inclination of reference fringes, and poor definition of the apparent
location of surface A.

*
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attempting to minimize end effects, the model was initially
by 0.8-inch-thick glass windows separated from the model ends
cork spacers. The windows were slid into position immediately

preceding each photographic e~osure. The experimental data were then
in poor agreement with theory. Apparently, insertion of the windows
prior to the photographic exposure, even for very short ~eriods of time,
allowed appreciable nonuniform heating of the glass. Air disturbances
were not evident. It would appear that extreme caution should be ex-
ercised in interpreting interferogrsms of heated models when the model
contacts bounding glass windows. in order to eliminate the window
effects, the windows were removed, and the ends were left unbounded.
A new set of measurements rendered the results presented In figures
15(a) and (b). The interference pattern obtained across the end of the
model with the open-end arrangement was examined visually while the
model was heated. The endwise boundary layer was found to be of nearly
constant thickness (about l/4 inch) in the region of interest, and the
temperature gradient was essentially parallel to the model length at
all pertinent temperatures. Thus, the end effects were regarded as in-
appreciable when the windows were removed.

.
Thermal expansion of the model was considered in the vertical di-

rection, but expansion in the lengthwise direction was neglected.

Temperatures were measured throughout the model by means of thermo-
couples located at the points indicated in figure 13(b). A typical
temperature distribution is also indicated in the figure, where the
temperature difference at each point is noted with respect to the upper-
most thermocouple location in the midspan plane. Inclination of refer-
ence fringes with respect to surface A, caused by initial disorientation
of the fringes and the small vertical temperature gradient within the
uqper block, was considered in the measurements.

The existence of refracted ray traces in the vicinity of surface
A tended to diminish the definition of the apparent surface location.
The difficulty of locating surface A, especially when K = l/2, may
account for the apparent systematic disagreement between theory and
experiment when K = 1/2.
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(a) K =;.

Figure 14. - -tie~ of Fmw!tdmodel.
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(b) K = 1.

Figure 14. - Concludd. ~tetf.awgmn of heated model.
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Optical-path-difference gmdient, F* x
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(a) Optical-path difference.

Figure I-5.- Verification of refraction-error formla associated with
constant deneity gradient.
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(b) Distortion; K= 1.
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Figure 15. - Concluded.Verificationof refraction-errorformulaassociated
wtth conatxntdensitygradient.
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